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Abstract

Fashion e-commerce is rapidly evolving, yet the
visualization of clothing designs from natural language
descriptions remains challenging due to the need for
specialized design tools and expertise. Our project,
Textile Vision, addresses this gap by developing a
CLIP-enhanced diffusion model that translates text prompts
into high-quality 2D fashion images. By conditioning a
latent diffusion model with cross-attention layers informed
by CLIP text embeddings, we aim to improve semantic
alignment and visual coherence in generated fashion
designs. We leveraged a subset of the DeepFashion
dataset, given its detailed stylistic annotations, to train and
evaluate our model. Despite encountering dataset quality
challenges, specifically low-dynamic-range encoding
issues, we implemented a series of architectural and
training refinements to optimize performance. Our results
indicate that while the baseline diffusion model performs
adequately, the CLIP-enhanced model shows improved
alignment between text descriptions and generated imagery,
suggesting that specialized cross-attention mechanisms can
enhance domain-specific text-to-image synthesis. This work
demonstrates the potential for AI-driven fashion design
tools, especially for small businesses and educational
applications, while highlighting key challenges and future
directions such as improved data preprocessing and
memory-efficient fine-tuning techniques.

1. Introduction

Fashion e-commerce is rapidly growing, with customers
requesting more personalized experiences. While solutions
exist for clothes customization, current methods of clothing
design visualization often require professional designers or
complex software, such as Optitex or Gerber AccuMark
design software. Our approach leverages a Diffusion

Model architecture enhanced with a CLIP-based cross
attention layer that will take text input from a user and
generate a 2D image of a desired outfit aims to bridge
the gap between natural language descriptions and visual
synthesis of fashion designs. Outside of the primary
use case, the outcome of our project can be used by
small fashion businesses without in-house designers or
in fashion education and training. While text-to-image
generation exists, specialized fashion-focused models are
rare and often struggle with generating realistic fashion
details and maintaining style consistency. Our research
aims to advance the field of AI-powered fashion design by
developing model architectures and training methodologies
that can better learn fashion-related features and semantic
relationships, potentially establishing new benchmarks for
text-to-fashion image generation.
Successfully fine-tuning this diffusion model would have
significant implications for fashion design, personalized
marketing, and e-commerce as it would enable more
customized visual outputs for consumers and designers.
In building models such as this Fashion Generative model
users can create highly targeted design aids and fashion
designs that reflect their creativity and greatly reduce the
time and resources involved in new fashion lines. Overall
we hope this will reduce costs and time-to-market for new
fashion lines.

2. Related Works

Machine Learning methods have long been studied
in their applications to the fashion space as they can
help improve the overall online experience while also
making previously inaccessible spaces more accessible.
When it comes to computer vision methods broadly,
existing implementations generally fall into one of
four categories—synthesis, detection, analysis, and
recommendation. [2] Examples of these tools include
virtual try-ons, pose transfer to understand the fit of
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an outfit in different angles, and video generation from
image inputs. This last implementation was achieved with
diffusion models utilizing pseudo-3D convolution, VAE,
and CLIP encoders to condition synthesised videos to
help users understand the movement and flow of certain
clothing items. [4] This work relates to our project by
reviewing how diffusion and CLIP embeddings can be used
together in fashion contexts. However, while [4] focuses
on dynamic fashion video generation from static images,
our project focuses on generating new clothing designs
entirely from textual descriptions. This means our project
will require finer-grained semantic mapping between text
and visual output.
Text-to-image generation is a growing and highly impactful
space, and the first notable implementation of these models
was with DRAW, which focused on image generation
but relied on specific data training. Along with that,
other implementations of these models were generally
trained on smaller datasets, possibly limiting the abilities
of the final models. DALL-E was in turn developed to
address these issues and develop a flexible text-to-image
generative model capable of zero-shot learning. [7]
However, DALL-E used a transformer style model, relying
on Vector Quantized Variational Autoencoder to map
images into tokens and eventually leading to struggles
with computational expense and finer details. Because of
that, DALL-E-2 was later developed using CLIP latents
and diffusion models. They switched to CLIP, which was
a model that learns how to match text descriptions with
images by mapping them to a common embedding space.
These CLIP image embeddings are used in tandem with
diffusion models to allow for better quality and more
realistic output images. [6] These models, particularly
DALL-E 2, directly informed our choice to combine CLIP
embeddings with diffusion processes. While DALL-E 2
targets broad domain text-to-image generation, our project
narrows this pipeline to fashion-specific tasks, requiring
adaptation to the fine-grained details often seen in clothing
photos such as textures and seams.
Now, diffusion models are notable for the improvements
they can bring to generation, but latent diffusion models
specifically bring about increased stability while reducing
computation costs. While they encode images in a
lower dimensional latent space, a pre-trained autoencoder
maintains essential visual information to ensure the final
images are high quality. [8] The use of Latent Diffusion
Models drove our team’s choice to maintain a balance
between computational feasibility and image quality. We
will consider use of a latent space representation to make
model training and inference feasible even with limited
GPU resources, but adapt it with CLIP conditioning layers
specific to the fashion domain. [8]
The DiffusionCLIP framework reviews manipulation of

text-guided images through leveraging multiple properties
of diffusion models. Diffusion models have a full inversion
capability as well as consistent performance in high-quality
image generation abilities. Looking at other models in
this space such as GAN models we see a general struggle
to reconstruct images that depict unusual poses or more
complex details. Unlike GAN models, however, diffusion
models have shown to surpass these limitations by enabling
multi-attribute manipulation through use of a noise
combination method. This allows diffusion based models
to generate unique poses as well as variable content that is
less similar to training data. Overall diffusion models learn
stronger control over characteristics of generated images.
They perform better when it comes to highlighting key
objects in images and removing unwanted ones. [5] This
DiffusionClip model in [5] exhibits the key advantages
of diffusion over GAN-based approaches, particularly for
generating uncommon clothing designs or outfits with
multiple style attributes. However, while DiffusionCLIP
focuses mainly on post-hoc editing of generated images,
our model will aim to generate full fashion images directly
from a prompt, integrating fashion semantics from the very
start of the generation process.
By leveraging diffusion models in our project we will
be able to create more detailed and accurate clothing
designs from text descriptions. Additionally, diffusion
based models seem to have a stronger capacity for learning
detailed generation. This will mean our model should be
stronger when it comes to capturing more intricate and
detailed fashion styles and designs, even when it has not
seen them before. Finally, as diffusion models allow for
multi-attribute manipulation, users of our model should
ideally be given the chance to change many aspects of
fashion generated images at once. For these reasons a
disunion model seems optimal and a strong choice for our
fashion image generator model.
Looking into the specific diffusion models, we find firstly
that image generation has three main problem areas in
multi-object generation, rare or novel concept generation,
and generated image quality improvements. Different
models integrate varying techniques to account for these
issues including attention maps, subject-driven generation,
and instruction tuning for human preference. [9] With this
information, we can effectively choose the best diffusion
model that best accounts for our requirements while
controlling for model accessibility.

3. Method / Approach

In our project approach we aim to develop a
text-to-image pipeline that translates textual descriptions
into AI-generated images of clothing. We intend to do this
by leveraging diffusion models and CLIP embeddings. Our
approach consists of multiple technical stages. We plan to
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begin with text embedding, followed by image generation,
model training, fine-tuning, and then evaluation. We
selected a diffusion model because they do very well in
generation of high-quality diverse images, compared to
older GAN-based approaches. This aligns with our need for
varied and realistic fashion designs. GANs were initially
considered for this project, however, as they tend to suffer
from training instability, especially when conditioned on
complex text prompts we decided to use Diffusion models,
which by contrast, provide more stable training dynamics
and consistently generate higher-quality, diverse outputs,
making them more appropriate for our objective. Given
our more complex dataset, with sample images featured
below, the stable and stronger image generation capacity
from diffusion-based synthesis paired with CLIP guidance
was the preferable strategy.

Our design will integrate cross-attention layers between

Figure 1. Category and Attribute Prediction Benchmark Dataset
Visualization for subset of the image data and labels

the text embedding and the image synthesis process. This
is inspired by the transformer architectures discussed in
class. Cross-attention should enhance the model’s ability to
maintain a global understanding of both spatial coherence
and semantic alignment with the input prompt, an essential
factor in complex object generation such as fashion
clothing. First, we will encode textual descriptions of
clothing items into feature vectors using a CLIP encoding
model. This will ensure that our model accurately captures
the semantic meaning of the input text. These feature
vectors will then serve as conditioning information for
a diffusion model, which is well-suited for high-quality
image synthesis. To enhance the model’s ability to generate
realistic and coherent fashion designs, we will incorporate
cross-attention layers, improving its ability to maintain a
global understanding of the image being generated. During
training, we will monitor performance using loss functions
and leverage TensorFlow’s TensorBoard for visualization.

Figure 2. An overview of the latent diffusion-based architecture
we adapt is illustrated in Fig. [8]

To evaluate our model, we will generate images using
our fine-tuned model and calculate the Inception Score
to assess image clarity and diversity. Additionally,
we plan to conduct user studies, allowing individuals,
such as ourselves, to compare our generated images
to real-world fashion items and provide qualitative
feedback. Our model will be trained using the
dataset of DeepFashion which is composed of around
700,000 images described by stylists. This dataset will
ensure exposure to high-quality images, detailed textual
descriptions, and fashion styling patterns. Fine-tuning
will involve adjusting hyperparameters, modifying network
architectures, and experimenting with different diffusion
model configurations to improve image quality and
alignment with text prompts. To optimize training, we
will explore random search for hyperparameter tuning. We
will tune parameters such as learning rate, batch size, noise
schedules, and diffusion steps to maximize performance.
Overall, our methodology is designed to effectively
bridge the gap between natural language descriptions
and fashion image synthesis, contributing to AI-powered
fashion design. For our baseline method, we will
implement a standard diffusion model architecture without
the CLIP-enhanced cross-attention layers, using only
basic conditioning techniques to establish a performance
benchmark for text-to-fashion image generation. This
approach will serve as a foundation to compare against
our proposed CLIP-enhanced architecture, allowing us to
quantify the improvement gained through our specialized
cross-attention mechanisms.
To evaluate performance, we will employ a combination
of quantitative metrics including Inception Score (IS) to
assess clarity and diversity of the outputs, and supplement
these with qualitative user studies where participants will
compare the generated fashion designs against similar real
images to evaluate style consistency, detail accuracy, and
overall visual appeal.

4. Data

For this project, we used a subset of the DeepFashion
dataset designed for Fashion Synthesis tasks. The
DeepFashion dataset is a large-scale collection of
high-quality fashion images with detailed annotations.
In total it is composed of approximately 78,979 images
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that are each paired with metadata that details clothing
type, categories, attributes, and stylist description. We
gained access to the full dataset through an application
and password-protected download process, following a
procedure provided by the dataset creators.
We chose to work with the DeepFashion dataset because
of its extensive collection of diverse clothing styles and
its structured attribute annotations, which made it a
strong candidate for training both the CLIP and Stable
Diffusion models on fine-grained fashion descriptions.
The dataset is divided into two main subsets. The first
focuses on category and attribute prediction, providing
labeled clothing images that are annotated by garment
types as well as their attributes. The second subset focuses
on consumer behavior modeling. It includes clothing
images and associated purchase rates from online shopping
scenarios. This subset can be valuable for tasks aiming to
generate fashion items that are not only visually realistic
but also optimized for commercial appeal and consumer
engagement. For our project, we primarily utilized the
category and attribute prediction subset, as it provided the
most structured textual prompts necessary for conditioning
our CLIP and Stable Diffusion models. However, a strong
expansion of this model would be to include the consumer
behavior data and tailor a model to design clothes that have
a high consumer demand.
The images were initially stored in an H5 file format
for ease of access during training within Google Colab.
However, the dataset underwent a significant transformation
process initially unknown to us during storage: images
were encoded into low-dynamic-range tensors rather than
preserved as RGB pixel arrays. This meant that the values
in the image array were set between -1 and 1 and to turn
them into proper RGB images we needed to normalize
all images between 0 and 1, and multiply all values by
255 to get RGB represented images. This specific image
preprocessing is required for the CLIP fine tuning as the
CLIP model expects actual RGB images and not some
normalized image tensor. Furthermore, preprocessing steps
included resizing all images to 512!512 pixels to match the
input size requirements of Stable Diffusion and applying
normalization as necessary. In terms of potential biases,
it is worth noting that the DeepFashion dataset is derived
primarily from online fashion retailers and catalogs. As
a result, it may overrepresent Western-style clothing and
commercially popular trends, potentially limiting the
diversity of generated fashion styles if not corrected during
model training.
The intended use of the DeepFashion dataset aligns with
our project goals, as it was originally created for training
models on fashion recognition, generation, and retrieval
tasks, making it a strong choice if properly prepared.
Overall, while the DeepFashion dataset offers an excellent

foundation for fashion image generation tasks, issues in
the handling and storage pipeline significantly limited our
project’s success during this training phase [3].

5. Experiments and Results

5.1. Training Challenges and Solutions

While developing a text-to-image generation pipeline
using a Stable Diffusion model conditioned on CLIP
embeddings, we encountered significant challenges
stemming from dataset format issues, resource limitations
and model instability. One key issue we had to navigate
was consistently running out of memory, even while
using Colab Pro GPU’s with upgraded compute resources.
Despite reducing batch sizes and clearing the CUDA cache
after every epoch, the maximum batch size we could stably
support was 8. This was severely limiting to the models
training stability and caused highly variable gradient
updates. This instability was reflected in an increasing
and oscillating loss trend across epochs, suggesting issues
with convergence stemming from the small batch size that
limited the generalizability potential of the model.
Additionally, training on subsets of the dataset ranging
from 20 images up to 10,000 images revealed that smaller
datasets further led to insufficient generalization, while
larger subsets caused runtime crashes due to excessive
memory demands. Attempts to fine-tune learning rates,
number of epochs, and batch sizes provided limited
improvements when we began fine-tuning. Learning rates
between 2e-5 and 5e-5 were tested, but adjusting the
learning rate alone did not resolve convergence issues. For
example, training on 10,000 images, even with 5 epochs,
required over 7 hours on an A100 GPU, significantly
constraining experimental throughput.
Another critical issue emerged from the dataset format
itself. The images stored in the provided .h5 file were
not standard RGB images but rather compressed low
dynamic range tensors with values scaled between -1
and 1. Since CLIP requires meaningful edge, texture,
and color information to produce effective embeddings,
these tensor-like representations proved incompatible.
After identifying this issue through a deep dive into the
tensor formatting, we resolved it by converting the images
back to a positive, normalized RGB format, thereby
restoring compatibility with CLIP’s input expectations and
preserving the image information and trends.
Despite the resolution of input formatting issues,
fine-tuning CLIP on this data yielded embeddings
that were worse than the baseline pre-trained CLIP model.
Fine-tuning attempted to overfit on imperfect training
data, leading to degraded performance. Consequently, we
elected to use the original pre-trained CLIP embeddings in
the final pipeline. In addition, we observed that fine-tuning
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CLIP increased training loss variance, further motivating
the decision to revert to the pre-trained embeddings for
stability.
Our final training setup used the AdamW optimizer, a
constant learning rate schedule, and a batch size of 8. We
ran experiments on Google Colab Pro with an NVIDIA
A100 GPU (40GB memory).

5.2. Training Stability Across Dataset Sizes

We recorded the loss over a range of epochs in trainng
different dataset sizes: [20, 100, and 1000 images] at
batches of size 8 in order to analyze our training stability.
As shown in Figure 3 and Table 1, training with 20
images resulted in generally stable but significantly slower
convergence. On the other hand, training with 100 images
showed high training instability at epoch 3, where we see
a spike in loss to over 0.14. Training with 1000 images
initially had a higher loss compared to 20 or 100 images
but eventually resulted in more stable improvement across
epochs.
These results showed us that while smaller datasets might
acheive a lower initial loss, they are heavily at risk
for overfitting or unstable gradients steps and make the
model less generalizable. On the other hand, larger
datasets showed more stability during learning however
they required much more resources and careful optimization
to ensure convergence. This analysis informed our decision
to cap training datasets at sizes manageable within our
teams memory and computation constraints while ensuring
our model is generalizable.

Figure 3. Loss vs Epochs for Different Number of Images at Batch
Size 8. Training on small datasets led to faster but less reliable
convergence. Larger datasets stabilized loss over time but at higher
initial cost.

Dataset Size Epoch (1-5) Losses

20 Images 0.0646 / 0.0465 / 0.0438 / 0.0634 / 0.0197
100 Images 0.0389 / 0.0374 / 0.1419 / 0.0394 / 0.0118
1000 Images 0.0748 / 0.0763 / 0.0283 / 0.0639 / 0.0262

Table 1. Loss per Epoch for Different Dataset Sizes at Batch Size
8. Spikes in loss reflect instability, especially for smaller datasets.

5.3. Generated images

5.3.1 Successful examples

Most of the generated images demonstrated high quality
and accurately followed the provided prompts. Notable
examples can be found in Figure 9.

Figure 4. *
(a) Green bomber jacket

Figure 5. *
(b) Brown leather belt

Figure 6. *
(c) Formal black dress

Figure 7. *
(d) V-neck t-shirt

Figure 8. *
(e) Short overalls

Figure 9. Successful examples of generated clothing images
conditioned on textual prompts.
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5.3.2 Less successful examples

A small subset of images exhibited limitations. For
example, some human body parts (Figure 13 (b)) or certain
clothes elements (Figure 13 (a) and (c)) were unrealistic.
These limitations may be attributed to compute constraints
affecting training dataset size.

Figure 10. *
(a) Black sweatsuit

Figure 11. *
(b) Tartan skirt

Figure 12. *
(c) Black high-waisted skirt

Figure 13. Less successful examples of generated clothing images
conditioned on textual prompts.

5.4. Evaluation

5.4.1 Inception score

Our model achieved promising results based on evaluation
of the 138 generated images:

• Mean Inception Score: 8.114767074584961

• Standard Deviation: 1.0872924327850342

This mean score indicates our diffusion model is
generating high-quality and diverse images, comparable
to professional models such as earlier versions of Stable
Diffusion (e.g., Stable Diffusion v1) [8] and other popular
text-to-image models like BigGAN trained on ImageNet
[1], which reported inception scores in the 7–9 range.
The standard deviation falls within acceptable ranges,
suggesting reasonable consistency in outputs.

For comparison, the pretrained Stable Diffusion v1.4
model (trained on LAION-2B-en) achieved an Inception

Score around 7.5–8 on general prompts [8], while BigGAN
achieved around 8.4 on ImageNet classes [1]. This supports
that our fine-tuned model performed competitively despite
hardware and data limitations.

Method Inception Score (Mean ± Std)
Pretrained SD 6.5 ± 1.2
SD + Pretrained CLIP 7.2 ± 1.1
Our Fine-tuned Model 8.1 ± 1.1

Table 2. Inception Scores comparing the pretrained Stable
Diffusion (SD), Stable Diffusion with pretrained CLIP
embeddings, and our fine-tuned model.

5.4.2 Ablation Studies

To evaluate how various elements of our model pipeline
contributed to overall loss and model success we also
conducted 3 key ablation studies. We first looked into
the CLIP embedding type, being pre-trained or fine-tuned.
From here we reviewed how the model performed on the
original input image in a raw vs normalized RGB format.
Finally we evaluated how the dataset size affected model
performance and loss.
To begin with our CLIP embedding type analysis we
removed our pre-trained CLIP embeddings and learned
that fine-tuning CLIP on our smaller datasets consistently
degraded performance and led to training instability and
worse image generation quality. Thus, in our final model
we used the pre-trained CLIP embeddings.
next, When using the raw, un-normalized input tensors
instead of normalized RGB inputs, evaluation of our model
noted key failures in capturing meaningful visual structures
of the fashion images. This resulted in blurred and
nonsensical image outputs. Here we learned the normalized
image tensors would be best for model training.
Finally, dataset size greatly impacted output image quality.
When we trained on subsets smaller than 500 images we
saw poor generalization and clear overfitting issues in the
output images and loss trends.
These findings show that maintaining high-quality feature
embeddings, ensuring proper input normalization, and
using sufficient dataset size are crucial to achieving reliable
results.

5.5. Hyperparameter Tuning

During hyperparameter tuning, we varied the following
variables:

• learning rates: 2e-5 to 5e-5

• optimizers: Adam vs AdamW

• batch sizes: 4, 8, 16
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• epoch numbers: 2 to 10

Our initial literature review concluded that learning rates
lower than 2e-5 slowed convergence too much, while rates
higher than 5e-5 introduced instability and noise in loss
curves. We found that 5e-5 was the fastest learning
rate that maintained stability. AdamW outperformed
Adam, consistently, as it yielded a smoother convergence
resulted in less overfitting. A batch size of 8 was
selected as a trade-off between memory availability
and gradient stability. Experiments beyond 5 epochs
showed diminishing returns, often leading to marginal loss
reductions at the cost of large computation time. Therefore,
our final configuration used a constant learning rate of 5e-5,
AdamW optimizer, a batch size of 8, and 5-epochs of
training.

5.6. Analysis

Overall, our results highlight how important data quality,
computational resources, and hyperparameter tuning are
when developing text-to-image generation models on
limited datasets. Our fine-tuned model achieved strong
inception scores compared to baseline diffusion models,
despite significant challenges that stemmed from small
batch sizes and limited compute resources. The ablation
studies confirmed that pre-trained CLIP embeddings and
normalized image inputs were essential for stable and
high-quality outputs. Finally, analysis of loss curves
emphasized the delicate balance between our dataset size,
the training stability, and resource constraints. Despite these
challenges, our diffusion pipeline exhibits strong image
generation results.

6. Conclusion

This project was key in our learning about the challenges
that come with fine-tuning a larger generative model
such as the one we worked on being the CLIP and
Stable Diffusion model. Specifically when it comes to
resource use. Additionally, we learned a key lesson about
importance dataset quality, the discovery that our images
were incorrectly encoded as low-dynamic-range tensors
rather than the intended RGB images severely slowed
the training process, especially for CLIP, which relies on
quality visual features for learning. We further experienced
how compute and memory limitations, even with access to
powerful GPUs like the A100, restrict training potential.
Small batch sizes, limited by CUDA memory errors,
resulted in unstable gradient updates and an oscillating loss.
This matched with slow training times greatly slowed the
fine-tuning and problem solving process.
Despite these challenges we managed to successfully
develop a text-to image generation pipeline. Our final
Diffusion model, that was enhanced by CLIP achieved

strong results, reflected in our mean inception score of
8.1 ±1.1. This score is on par with leading diffusion
models like the earlier versions of Stable Diffusion.
Further our success was further indicated by the quality of
images generated, which were by human evaluation easily
recognizable and passing as real fashion images.
These challenges have highlighted many paths for future
improvements. Moving forward we would aim to
leverage memory efficient fine-tuning methods, such as
LoRA (Low-Rank Adaptation) or other parameter-efficient
fine-tuning strategies. We hope these strategies will
be more successful in alleviating memory bottlenecks,
as recent studies have shown that LoRA can drastically
reduce the number of trainable parameters while achieving
performance comparable to full fine-tuning, allowing large
models to be adapted on limited computing resources [3].
Additionally, techniques like gradient accumulation, which
accumulates gradients over multiple smaller batches before
performing an optimizer step, could help simulate larger
batch sizes, working around our small batch size of 8 that
was limited by CUDA memory resources. This would be
beneficial because larger batch sizes lead to more stable
gradient estimations and help the loss curve to behave more
smoothly while encouraging convergence.
Extensions of this project could focus on integrating
consumer preference data from DeepFashion’s consumer
preferences subset. This would aim to generate realistic
fashion images that are intended to maximize styles that will
be of high demand by consumers. Expanding our model
to support these additions or multi-attribute manipulation
based on user input could also greatly enhance its usability
for small business owners and the fashion industry.
Overall, this project showed us the complexity of
fine-tuning foundation models but also sharpened our
understanding of the practical considerations necessary for
successful domain adaptation.

7



References

[1] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
In International Conference on Learning Representations
(ICLR), 2019. 6

[2] W.-H. Cheng, S. Song, C.-Y. Chen, S. C. Hidayati, and J. Liu.
Fashion meets computer vision: A survey. arXiv, n.d. arXiv
preprint. 1

[3] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Weizhu Wang, and Yonghui Chen.
Lora: Low-rank adaptation of large language models. arXiv,
2022. arXiv preprint arXiv:2106.09685. 4

[4] T. Islam, A. Miron, X. Liu, and Y. Li. Fashionflow:
Leveraging diffusion models for dynamic fashion video
synthesis from static imagery. arXiv, 2024. arXiv preprint.
2

[5] G. Kim, T. Kwon, and J. C. Ye. Diffusionclip: Text-guided
diffusion models for robust image manipulation. CVPR 2022,
2022. Conference paper. 2

[6] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M.
Chen. Hierarchical text-conditional image generation with
clip latents. arXiv, 2022. arXiv preprint. 2

[7] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A.
Radford, M. Chen, and I. Sutskever. Zero-shot text-to-image
generation. arXiv, 2021. arXiv preprint. 2

[8] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B.
Ommer. High-resolution image synthesis with latent diffusion
models. arXiv, 2022. arXiv preprint. 2, 3, 6

[9] T. Zhang, Z. Wang, J. Huang, M. M. Tasnim, and W. Shi.
A survey of diffusion based image generation models: Issues
and their solutions. arXiv, 2023. arXiv preprint. 2

8


